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Muller’s ratchet in random graphs and scale-free networks
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Muller’s ratchet is an evolutionary process that has been implicated in the extinction of asexual species, the
evolution of mitochondria, the degeneration of the Y chromosome, the evolution of sex and recombination and
the evolution of microbes. Here we study the speed of Muller’s ratchet in a population subdivided into many
small subpopulations connected by migration, and distributed on a network. We compare the speed of the
ratchet in two distinct types of topologies: scale free networks and random graphs. The difference between the
topologies is noticeable when the average connectivity of the network and the migration rate is large. In this
situation we observe that the ratchet clicks faster in scale free networks than in random graphs. So contrary to
intuition, scale free networks are more prone to loss of genetic information than random graphs. On the other
hand, we show that scale free networks are more robust to the random extinction than random graphs. Since
these complex networks have been shown to describe well real-life systems, our results open a framework for

studying the evolution of microbes and disease epidemics.
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The accumulation of deleterious mutations by the loss of
the fittest individuals in an asexual population is known as
Muller’s ratchet [1]. Briefly the process works as follows:
as most mutations are deleterious an effectively infinite
population develops an equilibrium between mutation and
natural selection. At this equilibrium the expected number of
individuals free of deleterious mutations is given by ny
=Nexp(=U/s), where N is the population size, U the muta-
tion rate, and s is the selection coefficient. This is classically
referred to as least loaded class. If it so happens that this
class is small and due to the fact that any natural population
is finite, stochastic effects become important and the class
may be lost. As there is no sex, this loss is irreversible and a
click of the ratchet occurs [2]. Successive clicks result in the
continuous decline in mean fitness of the population. This
process constitutes one of the theories invoked to explain the
evolution of sex and sex chromosomes [3-5], of mitochon-
dria genomes [6], and the extinction of small asexual popu-
lations [7]. It has also been suggested to play a role in the
evolution of microbes and virus [8]. Several properties of the
ratchet have been studied under the simplistic assumption
that populations are unstructured [9-14]. One, that has been
the subject of intense research, is the speed of the ratchet.
Analytical expressions for its speed, valid over every param-
eter range, have been difficult to obtain, and there are only
approximations valid under specific conditions. Although the
process involves only three evolutionary forces in unstruc-
tured populations: mutation, selection, and drift; its quantifi-
cation has constituted an extraordinary theoretical problem.
From simulations and some analytical approximations it is
known that in populations without structure the ratchet turns
very fast when Nexp(-U/s)<1 and its speed becomes of
little biological significance when N exp(-U/s)s>10 [15].
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However the vast majority of species are to some extent
subdivided into small populations where individuals compete
with other individuals locally [16—18]. So it is important to
understand the role of population subdivision on this process.
There are two commonly studied models of population sub-
division: the stepping-stone model [18] and the island model
[16]. Recently we studied the ratchet in a modified version of
the stepping-stone model by introducing long range links
between the subpopulations (small-world network) [19]
while keeping the mean connectivity constant [20]. Briefly
we saw that population subdivision increases the speed of the
ratchet. Motivated by the pioneer works that reveal that real-
life networks exhibit a power law distribution for the con-
nectivity between their nodes [21-23], here we address the
problem of mutation accumulation in both scale-free net-
works [21] and random graphs (Erdés and Rényi model
[24]). Both the importance of spatial structure in pathogen
transmission and the role of the ratchet in microbial evolu-
tion has been recently recognized [8,25-30].

We consider the evolution of subdivided populations of
asexual haploid organisms, such as many bacteria. We as-
sume nonoverlapping generations and the following life
cycle: migration, mutation, and selection. The population is
subdivided into D demes (corresponding to the nodes of the
network), each with N, individuals. The total number of in-
dividuals, N,=DN,, is constant. In order to model migration
we do as follows. Each deme i of a given network is con-
nected to k; other demes. In the case of random graphs the
connectivities k; are distributed according to a Poisson dis-
tribution of mean z, which denotes the mean connectivity of
the graph, while in scale-free networks the distribution of
connectivities obeys a power law P(k) o k™, with y=3. Each
edge of the network connects two demes that exchange mi-
grants at a mean rate m. We have assumed bidirectional mi-
gration. We produce a new generation of individuals by tak-
ing the following steps: we estimate the number of migrants
in each deme by sampling from a Poisson distribution with
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FIG. 1. Comparison of scale free and random graph networks.
(a) with migration, m. (b) with the average connectivity of the net-
work, z. The parameter values are D=500, N,=50, U=0.1,
5§=0.02 in (a) z=10 and in (b) m=0.003.

mean N, mk;, where k; is the number of demes that are con-
nected to the deme in question. The individuals that migrate
are sampled at random, without replacement, from the origi-
nal deme and added to the recipient demes. After migration,
mutation and selection occurs. For each deme a random in-
dividual is picked and is subject to new deleterious mutations
which are Poisson distributed with mean U. Every mutation
will cause the same decrease in fitness, s, and an individual
survives according to its fitness. We assume multiplicative
fitness: w;=(1 —s)/, where j is the number of deleterious mu-
tations an individual carries. In each generation, we count the
number of individuals that have the lowest number of delete-
rious mutations in the whole population. If this least loaded
class is lost, a click of the ratchet occurs. The mean time
between clicks of the ratchet T;, can then be calculated. We
have made 25 runs for each set of parameters.

We start comparing the two topologies by analyzing dif-
ferent migration rates in a case where the ratchet is expected
to click in the corresponding undivided population. Figure
1(a) shows the results for a population with D=500 demes in
the two types of networks. From Fig. 1(a) we clearly see that
increasing migration slows the ratchet in both types of net-
works. This is expected since, as migration rate increases, the
effective population size gets closer to the one in the homo-
geneous case. In the figure we can observe that, for very low
migration rates, the mean time between clicks of the ratchet
is the same for both scale free networks and random graphs.
But for high values of m the ratchet clicks faster in scale free
networks. So, all else being equal, random graphs are more
robust to the accumulation of deleterious mutations.

In Fig. 1(b) we show that the same applies for a fixed
value of m, but increasing the mean connectivity z. Again for
low values of z both topologies have similar rates of muta-
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FIG. 2. Comparison of scale free and random graph networks.
(a) with migration, m. (b) with the average connectivity of the net-
work, z. The parameter values are D=500, N,=50, U=0.5, s=0.1 in
(a) z=10 and in (b) m=0.003.

tion accumulation, but, for higher mean connectivities, ran-
dom graphs have a lower rate of the ratchet. For the values of
N,, U, and s in Fig. 1, the mean time between clicks of the
ratchet in a population without any structure is 7 ;= 1060.
It is clear that even with the highest migration and highest
average connectivities simulated, none of the topologies
achieved the homogeneous result. For a fixed value of
z=10 increasing migration leads to a saturation of 7 close
to 700 for random graphs, and to 550 for scale free networks.
In our algorithm one does not enable an effective number of
migrants greater than N,/2 in a deme, which would be mean-
ingless, since in that case the migrant population would be
higher than the resident. For the case of Fig. 1(a), this occurs
for m>0.03. When we fix m=0.003, but increase z, Tjcx
increases in both topologies, but even so does not reach the
homogeneous result.

We now consider a parameter set where the ratchet does
not turn in a completely homogeneous population. Figure 2
shows the results for a population with the same total size,
but different parameter values of mutation and selection.
Both U and s are 5 times higher, albeit their ratio is the same
as in Fig. 1. From the figure we clearly notice an exponential
growth of T, with both m and z. Here the difference be-
tween random graphs and scale free networks is even more
striking. In the case of random graphs with m=0.020 and
z=10 we have obtained T;,,=3891 (not shown), whereas in
scale free networks T =873.

From our results we have ascertained that when the mean
number of migrants per deme N, zm <1, the ratchet turns at
the same speed in both topologies. But when N,zm>1 the
difference between random graphs and scale free networks
emerges, with the former being less prone to genetic degen-
eration. In the limit m— 0 all demes become isolated, and
the effective population size, N,— N, As m (or z) increases
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FIG. 3. (a) Fraction of demes
with the least loaded class, f, as a
function of migration rate m. The
parameters are D=500, N,=50,
and z=10. Open symbols are for
scale free networks and filled
symbols for random graphs. For
circles U=0.1 and s=0.02, for tri-
angles U=0.5 and 5=0.1. (b) The
mean time between clicks of the
ratchet 7 as a function of the
selective parameter s. The param-
eters are D=200, N;=50, z=10,
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the effective size increases [31], although very slowly in the
regime where N,zm <1, since the average number of mi-
grants is too low to reduce isolation. But when N zm > 1, the
rate of increase in N, becomes considerable, and the efficacy
of selection N,s is greatly increased [32]. This is why we see
a more drastic increase in Fig. 2 which has a higher s) than in
Fig. 1 (which has a lower s).

The properties of the different topologies can help us un-
derstand why random graphs are less prone to fitness decline.
The clustering coefficient in scale free networks is higher
than that in random graphs [21] mainly due to the existence
of highly connected nodes (hubs). This implies that, when
occurring in small number, the individuals in the least loaded
class will be surely confined to a smaller number of demes
than in a random graph. This leads to a smaller effective size
in scale free networks compared to random graphs, and
therefore a higher speed of deleterious mutation accumula-
tion in scale free networks. If this is true then, at a given time
point, the fraction of demes in which the least loaded class
has not been lost will be larger in random graphs than in
scale free networks. Figure 3(a) shows that this is precisely
the case. In addition because the efficacy of selection against
deleterious mutations depends on the effective population
size, through N, s= 1, the value of s above which the ratchet
stops will be higher in scale free networks than in random
graphs. In Fig. 3(b) we compare the two topologies under the
same values of m and z but with varying s. Clearly at s
=0.037 the ratchet is coming to a halt in random graphs but
its speed is still considerable in scale free networks.

We have also analyzed the effect of extinction and recolo-
nization of a deme on the speed of the ratchet. This was done
by introducing, every generation, a probability e that a deme
goes extinct. Figure 4 shows the effect of extinction on both
types of topologies. If e is low, a population in a scale free
network accumulates deleterious mutations at a higher rate
than a population with a random graph topology, but as e
becomes large, the rate of the ratchet becomes similar in both
topologies. In random graphs the distribution of connectivi-
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ties is peaked around the mean connectivity z, so most of the
time demes with connectivity k around z become extinct. On
the other hand, in scale free networks the extinction proce-
dure occurs with higher probability at demes of low connec-
tivity. In Fig. 5 we plot the conditional probability that a
deme has the least loaded class in the whole population
given that the deme has connectivity k. We compute this by
averaging over time and over 1000 distinct runs. From the
figure, we clearly see that in both topologies a better con-
nected deme has a higher probability of having the least
loaded class. This, together with the previous argument, al-
lows one to infer that scale free networks are less sensitive to
random extinction. Indeed their performance is comparable
to that in random graphs when dealing with high extinction
rates.
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FIG. 4. Effect of random extinction on the mean time between
clicks of the ratchet. The parameters are D=500, N;=50, U=0.5,
s=0.1, and m=0.003. Open symbols are for scale free networks and
filled symbols for random graphs. For circles e=0.01, for squares
e=0.05, and for triangles e=0.1 (inset).
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FIG. 5. The probability that a deme has the least loaded class in
the whole population, Pj,q(k), as a function of deme connectivity
k, for scale free and random graphs. Parameters D=500,
N,=50, U=0.5, s=0.1, m=0.003, and z=10. Open symbols are for
scale free networks and filled symbols for random graphs.

A great range of systems such as social, communication,
and biological systems are well described by complex net-
works [19,21-23,33]. The understanding of the interplay be-
tween the underlying topology and the forces driving those
systems is of tremendous importance [33,34]. One example
of this, that has received a great deal of attention, is that of
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network epidemiology: the study of epidemic and disease
spreading [27,35,36], which are strictly tied to the topology
of social contact networks. On this context, a striking result
has arisen from the study of the classical susceptible-
infected-susceptible (SIS) epidemiological model on scale
free networks: scale-free networks are more prone to spread-
ing of diseases than random graphs and regular lattices
[27,35]. In this kind of model the role of microbe evolution
is disregarded. It is on this latter feature that we have focused
here. Even though the spreading of pathogens is faster in
scale-free networks than in any other topology [27,35], here
we have seen that scale free networks show a higher rate of
fitness decline. The life of a pathogen is dominated by con-
tinuous colonization of new hosts. Its success relies on its
genome ability to deal with mutation pressure, selection aris-
ing from the host immune system and demography. Our re-
sults open a new question in the understanding of pathogen
evolution: what type of network will be less advantageous
for the pathogen when all the parameters of its evolutionary
history are considered?
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